The MATE Workbench - an annotation tool
for XML coded speech corpora

David McKelvie?, Amy Isard?, Andreas Mengel ®,
Morten Baun Mgller ¢, Michael Grosse ¢ and Marion Klein ¢

3 Language Technology Group, Division of Informatics,
University of Edinburgh

b Institut fiir Maschinelle Sprachverarbeitung, Universitdt Stuttgart
¢Natural Interactive Systems Laboratory, Odense University

dDeutsches Forschungszentrum fur Kiunstliche Intelligenz, Saarbricken

Abstract

This paper describes the design and implementation of the MATE workbench, a
program which provides support for the annotation of speech and text. It provides
facilities for flexible display and editing of such annotations, and complex querying
of a resulting corpus.

The workbench offers a more flexible approach than most existing annotation
tools, which were often designed with a specific annotation scheme in mind. Any
annotation scheme can be used with the MATE workbench, provided it is coded
using XML markup (linked to the speech signal, if available, using certain conven-
tions). The workbench uses a transformation language to define specialised editors
optimised for particular annotation tasks, with suitable display formats and al-
lowable editing operations tailored to the task. The workbench is written in Java,
which means that it is platform-independent. This paper outlines the design of the
workbench software and compares it with other annotation programs.

Zusammenfassung

Dieser Beitrag beschreibt das Design und die Implementierung der MATE-Workbench,
einem Programm fiir die Annotation von gesprochener und geschriebener Sprache.
Die Workbench bietet Funktionen fiir die flexible Darstellung und Bearbeitung von
Annotationen sowie komplexe Suchanfragen an vorhandene Korpora.

Die Workbench hat einen offeneren Ansatz als die meisten existierenden Annotations-
Werkzeuge, welche oft auf ein festes Annotationsschema zugeschnitten sind. In der
MATE-Workbench kann jedes Annotationsschema benutzt werden, so es in XML
kodiert und - wenn verfiigbar - mit einem Sprachsignal verbunden ist. Die Work-
bench nutzt eine Transformationssprache fur die Definition und Generierung des fiir
die jeweilige Aufgabe angemessenen Editors mit entsprechenden Anzeigeformaten
und Bearbeitungsfunktionen. Die Workbench ist in der Programmiersprache Java

Preprint submitted to Elsevier Preprint 8 March 2000

geschrieben und somit platform-unabhangig. Der Beitrag erlautert das Design der
Workbench-Software und vergleicht es mit dem anderer Annotationsprogramme.

Abstrait

[Automatically produced by http://world.altavista.com. Please redo trans-
lation.]

Cet article décrit la conception et la mise en place de 1’établi de MATE, un
programme qui fournit le support pour l'annotation de la parole et du texte. Il
fournit des équipements pour 1’affichage et 1’édition flexibles de telles annotations,
et la question complexe d'un corpus résultant. L’établi offre une approche plus
souple que la plupart des outils existants d’annotation, qui ont été souvent congus
avec un arrangement spécifique d’annotation & I’esprit. N’importe quel arrangement
d’annotation peut étre utilisé avec 1’établi de MATE, s’ il est codé en utilisant
le marge bénéficiaire bénéficiaire de XML (joint au son articulé, si disponible, en
utilisant certaines conventions). L’établi emploie un langage de transformation pour
définir les éditeurs spécialisés optimalisés pour des taches particulieres d’annotation,
avec des formats d’affichage appropriés et des exécutions d’édition permises congus
en fonction la tache. L’établi est écrit dans Java, qui signifie qu’il est plateforme-
indépendant. Cet article trace les grandes lignes de la conception du logiciel d’établi
et la compare & d’autres programmes d’annotation.

1 Introduction

The MATE workbench is designed to aid the annotation of linguistic corpora
and to help users explore the relationships among different structures within
a corpus. The task we wish to support is the annotation of speech dialogues,
which means that the annotations will be textual and structured.

Annotation is a tedious job for humans. Although much research in compu-
tational linguistics has been devoted to developing trainable automatic algo-
rithms for annotating corpora, it still remains the case that such algorithms
often require hand annotated training data and human post-checking to en-
sure accuracy. Using an annotation tool which is specialised to the annotation
task at hand, i.e. one which only shows the information relevant to the task,
and only allows those editing actions which contribute to the task (and opti-
mises the human actions required), is probably preferable to a general purpose
editor. However, this normally requires writing individual editors for each task.

The MATE workbench provides a general framework for defining specialised
annotation editors, and makes the writing of an editor tool for a particular
annotation scheme and particular annotation task relatively easy. This gen-
erality is provided by allowing the use of any annotation schema coded in
XML [Bray et al.98] and by allowing the corpus designer to write rule based
transformations (using the XSLT [Clark 99| language) which describe how the

corpus is presented to the annotator and what editing actions are available.
The workbench provides a number of pre-defined stylesheets for use with par-
ticular annotation schemes, but its major strength is that it is possible to write
new stylesheets for existing or new schemes. We believe that the stylesheet lan-
guage is sufficiently high-level for writing stylesheets to be significantly easier
than writing an editor from scratch. Using the workbench, the user can dis-
play and edit existing XML-encoded corpora, add new levels of annotation,
perform queries over part or all of a corpus, and display or output the results.

In this paper we first present a review of a number of other annotation tools,
followed by an overview of the approach we have taken in the MATE work-
bench. This is followed by descriptions of each of the major system components
and the user interface. We then present examples of the workbench in action,
and finish with a discussion and possible directions for future work.

2 Review

There are many existing tools which offer support for annotation, querying
and/or display of speech corpora. An extensive list of these, with links, can
be found at the Linguistic Data Consortium’s Linguistic Annotation web site
[Bird & Liberman 99]. These tools have been created for many different and
sometimes very specific purposes, and the MATE workbench does not aim to
replace them all, but to offer a way of creating specific interfaces more easily
in future, and to provide a framework which makes it possible to work with
many different annotation schemes which are written in a common format (i.e.
XML).

Firstly, there are a number of tools aimed primarily at transcription and ma-
nipulation of the speech signal. Emu [Cassidy & Harrington 00] is written in
C++ and runs under Windows, Solaris and Linux. - EMU accepts many
sound formats if run under Unix with the Edinburgh Speech Tools Library
[Taylor et al.99]. The user can display a speech signal in various different for-
mats, and annotate it with labelled segments or events. It is also possible to
view and edit the labels displayed in a hierarchical tree-like structure. The
annotations are saved in the same format used by Entropic Xlabel (see be-
low) and a script has been written to perform conversion to and from the
BAS Partitur format [Schiel 99]. Emu also includes a query tool which allows
the user to save annotations in a format which can then be used for SQL
database queries. Praat [Boersma & Weenik 99| runs under all common op-
erating systems , contains many speech analysis algorithms, and also allows
labelling of time intervals and points on multiple tiers. It accepts many sound
formats, and contains a large library of speech analysis tools. Annotations are
saved in a format specific to this tool. Transcriber [Barras et al.00] is writ-

ten in Tcl/Tk and runs under Unix, Mac and Windows. Using the Snack
[Sjolander 97] sound extension, it accepts most common sound file formats,
and can process very large audio files. The speech signal can be displayed
in various ways, and segmentation and labelling windows are synchronised
with the speech display. Annotation is possible according to some pre-defined
annotation schemes; annotations are saved in XML format. It is possible to
transcribe overlapping speech, but the other annotation levels are strictly hier-
archical. Entropic waves+ and Xlabel [Entropic 96 have frequently been used
in the past for annotation of speech signals, but future support is uncertain
at present.

Secondly, there are a number of systems which focus on higher level anno-
tation. The Alembic workbench [Day 99| is designed to facilitate the con-
struction of training corpora for information extraction. Different annotation
schemes can be used with the workbench, but only one annotation can be
displayed at a time, and there is a fixed annotation environment and view of
annotations. It uses a Tipster compliant format [Grisham et al.96], and can
also output annotations in an SGML format. It does not provide facilities
for listening to or manipulating speech signals. The LACITO Archivage tool
[Michailovsky et al.99] displays recordings and annotations made by Lacito
members over the last thirty years. The annotations are stored as XML, and
XSL stylesheets are used to provide multiple views of the same data. Displays
are constructed from Java applets, and can be displayed in any standard web
browser.

Thirdly, there are systems which aim to bring together existing tools. GATE
[Cunningham & Humphreys 99] supports modules written in any program-
ming language. It uses the Tipster architecture internally, but also supports
SGML input and output. It is now possible to do manual annotations as
well, with a single fixed interface. GATE also contains a tool for comparing
annotations - for example one done manually and one automatically on the
same text. EUDICO [Brugman & Russel 99] is platform independent, written
in Java, and is usable over the internet with any standard browser. It allows
the user to synchronise text presentation with the playback of MPEG video.
It is designed so that new tools and corpora can easily be added. It is cur-
rently available only in “read-only” version (i.e. no annotation is possible). A
successful pilot study was carried out to investigate the possibility of a merger
of EUDICO with components from GATE.

Three of the tools described above (i.e. Emu, Praat and Transcriber) provide
speech signal manipulation tools far more sophisticated than those currently
available in the MATE workbench. We envisage that for some purposes, re-
searchers might wish to do the initial transcription from the speech signal
using another tool, and then use the MATE workbench for subsequent levels
of annotation, and for creating displays using these annotations. Except in

the case of Transcriber, this would necessitate transforming the annotations
into XML. Note that a tool for converting Entropic Xlabel format to XML is
already provided with the MATE workbench, (see section 6).

Alembic and LACITO both provide similar functionality to parts of MATE,
but tailored to the needs of their particular projects. Alembic provides auto-
matic annotation options far beyond the scope of MATE. LACITO takes the
most similar approach to MATE of all the tools studied, but it is restricted
to one particular domain; we would hope that in future if a project has need
of such a tool, they could more easily build it by writing MATE stylesheets
than by building an entire tool from scratch.

GATE and EUDICO aim to bring together existing tools and make it easier
to use them in a common framework. The MATE workbench also intends to
facilitate the display of output of automatic analysis tools - it would be useful
to investigate possibilities of integrating the MATE workbench with one or
both of these tools.

The workbench has much in common with other XML editors and browsers
currently being developed, such as the Amaya HTML browser/editor [Vatton et al.99].
We go beyond the scope of Amaya by supporting arbitrary annotation schemes

rather than just HTML and by using a more powerful mapping between doc-

ument and display structures.

3 Architecture

3.1 XML

XML has proved to be a widely used and effective format for annotating text

and speech corpora. A number of projects, including the TEI [Sperberg-McQueen & Burnard 94]
and the CES [Ide 99|, have developed general purpose SGML standards for

linguistic annotations. XML’s flexible hierarchical structure matches well with

many kinds of linguistic representation. The MATE workbench uses XML as

its input/output format, and uses a similar internal data model. However,

the strictly hierarchical nature of XML is at odds with certain aspects of

linguistic (particularly speech) data. In multi-speaker dialogues, speech may

overlap, and different annotation hierarchies coded on a corpus may overlap,

for example prosody and syntax.

One way to indicate this non-hierarchical structure in XML is by the use
of standoff annotation [Isard et al.98]. Linking between elements is done by
means of a distinguished href attribute of elements, which uses a subset of the

Fig. 1. Internal representation of example with intersecting hierarchies

XPOINTER proposal [DeRose et al.99] to point to arbitrary elements in the
same or different files. Such attributes are often called hyperlinks. The TEI
and CES schemes propose a number of ways of representing intersecting hier-
archies and overlapping speech segments, which usually use XML attributes
of type ID/IDREF to build non-hierarchical links between elements. It would
be possible to use such a mechanism in the workbench, although we have
preferred to use hyperlinks for intersecting hierarchy and explicit start/end
attributes to represent time.

This extended data model allows us to represent overlapping or crossing an-
notations. For example, the following non well-formed XML would represent
a case where a contrastive marking is on the subject and verb and crosses a
<vp> constituent.

<np><contrastive><det>the</det><n>cat</n></np>
<vp><v>sat</v></contrastive> <pp><pos>on</pos>
<det>the</det><n>mat</n></pp></vp>

This example could be represented in well-formed XML as shown below.

<np><det id="x1">the</det><n id="x2" >cat</n></np>
<vp><v id="x3">sat< /v><pp><pos id="x4">on< /pos>
<det id="x5">the</det><n id="x6">mat</n></pp></vp>
<contrastive href="id(x1)..id(x3)” />

When the above XML is read into the MATE internal representation (see
section 3.3), a normal tree structure is built for the <np> and the <vp>
elements. When the <contrastive> element is read and a node for it is created,
because of the href attribute referring to already existing elements, it is linked
to these already existing nodes. The workbench, in effect, interprets the input
XML to convert href attributes into references to other elements, providing a
way to build non-tree structures (see the discussion in section 3.3). The final
internal representation of this example is shown in figure 1. Note that the
<contrastive> element could be in a different file from the other elements.

Standoff annotation (where hyperlinks can refer to elements in the same or a
different file) is not essential, but it provides a way of factoring annotations

and is very useful if multiple versions of an annotation layer are required, for
example to compare annotations by different coders.

3.2 Software Architecture

The MATE workbench is designed to work on annotated corpora coded in
XML. It is not restricted to a particular annotation scheme, (which would be
described in XML by a Document Type Definition). The architecture of the
MATE workbench consists of the following major components:

An internal database which is an in-memory representation of a set of hy-
perlinked XML documents. There are functions for loading and outputting
XML files into and out of the database (see section 3.3).

A query language and processor which are used to select parts of this
database for subsequent display or processing (see section 4).

A stylesheet language and processor which respectively define and im-
plement a language for describing structural transformations on the database.
The output of a transformation applied to a document can either be an-
other document in the database or a set of display objects. These are used
to define how the database will be presented to the user (aee section 5).

A display processor which is responsible for handling the display and edit-
ing actions. This takes the display object output of a stylesheet transforma-
tion and shows it to the user (see section 5.6).

A user interface which handles file manipulation and tool invocation (see
section 6).

The workbench is written entirely in Java 1.2, which means that it is platform-
independent. We have tested it on Unix (Solaris) and Windows (NT and 98).
It does not currently run on Macintosh computers because there is not yet a
version of JDK1.2 for this platform. There is always a tradeoff between gen-
erality and specificity in software design. Specialised facilities in annotation
tools (e.g. automatic annotation) will always require the writing of specialised
software. However, we think that it is worthwhile building a common frame-
work that supports file I/O, database handling, query support and flexible
display facilities into which this software can be slotted, rather than building
specific tools, although these also have their place. No one tool can do ev-
erything, so the MATE workbench allows the reuse of other software, either
by using XML as a data interchange format, or by calling other Java mod-
ules which access the internal representation and the MATE display structure
using defined interfaces.

3.8 Internal representation

At the heart of the workbench is a database which contains a representation of
the XML files which have been loaded into the workbench. The abstract data
model that we use is a directed graph. Any directed graph can be represented
in the model. Each node in this graph has a type name (e.g. word, phrase, or
other arbitrarily chosen name), a set of string-valued attributes and an list
of child nodes (corresponding to outgoing edges from the node). Edges in the
model are unlabelled. A node may have several different parent nodes, but
each node has (at most) one distinguished parent node which can be used to
treat the graph as an edge-disjoint set of trees. This view of the graph is useful
for algorithms which require a tree structure, for example writing the internal
representation out to a set of files, applying the stylesheet processor, or asking
questions about the linear order of two elements.

The semantics or interpretation of the data model is flexible and may vary
depending on the requirements of the annotation schemes used. A common,
but not necessary, interpretation of a node and the parent-child relation is
that a node represents a segment of speech and its children represent a finer
sub-division of the same segment of speech, where the order of the children
corresponds to the temporal order. Links to speech or other data files are
stored as attributes of these nodes (for example as time offsets). But, for
example, there is no reason why one could not have an element <or> whose
children represented alternative descriptions of the same segment of speech.

The mapping from XML-encoded files to this data model is fairly straight-
forward. As each XML file is read into the database, each XML element and
piece of text is represented as a new node, whose type is the name of the
XML element (or “#PCDATA” for text). Attributes are copied over (taking
default values from the DTD if required). The parent-child relation is that
derived from textual inclusion in the XML files, and the distinguished par-
ent of a node is the node of the textually enclosing XML element. This gives
us a set of trees, one per loaded file. As a final stage of loading, elements
which are hyperlink sources (i.e. which have href attributes), have additional
(non-distinguished) parent-child links added to them. The href attribute is
evaluated to give a list of other nodes in the internal representation. Each
node in this list is then added as a new child of the source node. This gives
the ability to represent arbitrary directed graphs in XML. The expansion and
evaluation of hyperlinks is not strictly speaking necessary, but it makes for a
more uniform representation (i.e. textual inclusion of elements and hyperlinks
are treated on an equal footing) and it makes it easier to write queries which
access across hyperlinks.

Outputting the contents of the internal representation back to a set of XML

DOCUM ENTJ DT

*root *document

*element

ELEMENTDEF

*attribute

ENTITYDEF

[EL EMENT *elementType

*parent *children [ATTRI BUTEDE%
*anyparent

ELEMENT

Fig. 2. A partial schema for the MATE internal representation

files consists of writing a file for each root node (those with no distinguished
parents) and writing each descendant out recursively as XML, replacing non-
distinguished children by hyperlinks. Normally these hyperlink href attributes
can be added to existing elements but in some cases, new dummy elements
must be created. For example, if an element has three children, the first and
third of which are in the same document as the parent, but the second is in a
different file. This does not change the contents of the internal representation
once these files are read back in, as the loading software can recognise and
ignore the dummy elements.

The internal representation is implemented as a database of triples of <node
identifier, property name, property value>. Properties generalise the attributes
of an XML element and most are string valued, but some have values which are
lists of references to other nodes in the internal representation, for example the
*children and *parent properties. As an extension to the standard Document
Object Model (DOM) [Wood 98], DTDs are also represented as objects in the
database. The types of nodes and their interrelationships are shown in figure 2.
This representation of the database makes it easy for the query language (see
section 4) to express general questions about the annotations.

Most uses of this data model for describing corpora so far have resulted in
graphs which are acyclic (i.e. ones in which by following child pointers from
a node one never reaches the node or any of its ancestors again), but we
are not yet sure whether we want to enforce this restriction. Our data model
is similar to the semi-structured data model proposed by the Lore project
[Goldman et al.99], which has also been used as a way of representing XML.
However we use XPOINTER [DeRose et al.99] attributes rather than IDs for
hyperlinking, since that allows us to link across files without assuming a single

ID name space across all files. In addition we amalgamate elements linked to
by hrefs and textual children into the same parent-child relation.

A set of XML files is a valid MATE annotation if each file is an XML docu-
ment which is valid with respect to its DTD. We do not currently check any
restrictions on hyperlinks between the files, so for example there is currently
no way to ensure that all hyperlinks from utterance annotations reference word
annotations. It would be relatively easy to add this further level of checking to
the workbench, to make sure that the children of each node are locally well-
formed after hyperlinking. One could currently write a stylesheet that uses
the query language to find words that violate this constraint (i.e. an utterance
that contains a non word) and to display them in an error window.

An important point in the workbench design is that it is reflexive, i.e. all
information about the system is kept in a similar format in the internal repre-
sentation. For example, both stylesheets (which describe the appearance of the
user interface) and results of queries are stored in the same format. This has a
number of advantages. For example, we could use the workbench itself to pro-
vide an editor for writing stylesheets; transformations could be used to convert
stylesheets into other stylesheets in a programmatic way. More importantly,
since the internal representation structure is isomorphic to the structure of an
XML file, query results can be output as XML files, and can be displayed to
the user in a number of formats according to the stylesheet used. In particular,
since query results contain pointers to the elements that satisfy the query, we
have the option of either displaying results separately from the corpus or of
highlighting elements in context in the corpus.

4 The MATE Query Language Q4M

Linguistic annotation of speech data is not an end in itself, it is an investment
for later inspection and analysis of the data. The purpose of a query of this
annotation may not only be the identification of existing, i.e. explicitly encoded
information, but also the retrieval of information that can only be derived by
manipulation of existing information [Heid & Mengel 99]. This implies that
we need a query language that is suited to our data model and sufficiently
expressive to provide a wide range of queries.

XML is now being used for purposes and domains previously covered by re-
lational databases [Abiteboul et al.00]. Because XML is strongly hierarchical
and its structure is flexible (e.g. optional or repeated elements), its structure
is not quite in line with relational models which prefer a fixed schema and
a normalised form. This has led to a large number of proposed XML query
languages [Marchiori 98] more suited to its data model. Similar work was

10

($p pros) $p refers to <pros> elements
($s sent) $s refers to <sent> elements
($w word); $w refers to <word> elements

($s.type ~ "ans") && <sent> type attribute value is ”ans” AND

)
)
)
)
5): ($s.who ~ "Mary") && <sent> who attribute value is ”Mary” AND
) ($s I[$w) && <sent> immediately precedes <word> AND
) ($w.pos ~ "adv") && <word> pos value is adv” AND
) ($w.who ~ "Peter") && <word> who value is ”Peter” AND

) ($w @ $p) && <pros> element occurs during the <word> AND

10): ($p.type ~ "H*") <pros> type value is "H*”
Fig. 3. An example Q4M query.

also done in the database community on developing query languages for data
models which were more flexible than relational models, such as the work on
semi-structured databases by the Lore project [Goldman et al.99].

We nonetheless chose to develop our own query language and processor (Q4M).
The reasons were that; (1) when we started our work, there was no XML query
module available in Java; (2) there is still no standard in this area; (3) we
needed the query processor to interact well with our internal database; and
(4) we needed an extended data model that was an arbitrary directed graph
and not just a tree structure. A query language appropriate for the data model
requires the following properties (see [Murata & Robie 98 Abiteboul et al.00]
for general considerations of query languages in the XML world). Firstly, XML
constructs like element, attribute and attribute value must be accessible to the
query language. We need to be able to access elements either directly, via some
constraint, or indirectly by following the parent-child links in the database. In
addition, the order of children in the data model is linguistically significant,
so we need to query on this order. This is not always supported, as in early
versions of the semi-structured data model.

We also want to be able to return tuples of elements, i.e. combinations of ele-
ments with specific properties, pairs of elements with comparable properties,
elements in a hierarchical relation and so on. This feature goes beyond some
other XML query languages (such as the one defined in XSLT) which are re-
stricted to returning lists of elements. However other query languages such as
XML-QL [Deutsch et al.98] and SgmlQL [Le Maitre et al.96] do provide result
tuples. One example would be a query such as the following.

Find all adverbs spoken by Peter which include an ”H*” accent, and follow directly
after an answer by Mary.

Figure 3 shows the equivalent query expression in Q4M syntax. The Q4M
expression has a variable definition part (1-3) and a query constraint part (4-
10). Various mathematical operators, string operators, wildcards, and group
operators are available for atomic expressions. Expressions can be combined by

11

Description Example Operators Explanation
Comparison of elements by the

values of their attributes

1o a string ($a.pos~"N") ~ I~ equals, does notequal
fo a numerical value ($astart <0.2) < <=>>= === less, more, equal, notequal
relative to other values
as a string ($a.pos~$b.pos) ~ I~ equals, does not equal
asanumerical value ($a.end>$b.end) < <= > >= == = less, more. equal. notequal
position relative to other elements
in a hierarchy ($a” $b) n*m is (nth) ancestor of (mth) child
in a sequence ($a<< $b) n<<m is (mth) left neighbor (rel. to nth ancestor)
related to time ($a[$b) %UNNDINT@ (timerelations)
membership of a set of
elements ($a {$b) {0 is member, no member, join set
attribute values ($a.pos{$b.pos) { K {} is member, no member, join set

Fig. 4. List of defined Q4M operators

logical operators (in this example &&); logical OR (||) and negation (!) are also
allowed. Combinations of simple expressions can be grouped together using
parentheses. The query in figure 3 also demonstrates the use of time relations
available in Q4M, e.g. ‘@’ (temporal inclusion) and ‘][’ (temporal contact)
(see also [Mengel 99]). The temporal relations are shorthand for more complex
operators on the attributes of an element, and rely on a particular coding of the
connection between annotation and speech, for example ‘$a |[$b’ is the same
as ‘($a.end == $b.start)’ ' . Regular expressions can be used instead of element
names to denote a range of names. Immediate and non-immediate dominance
relations are provided by the ‘1A’ and ‘A’ operators, linear precedence among
children of an element is provided by the ‘<<’ operator. Figure 4 shows an
overview of the operators available in Q4M.

The result of a query is a list of tuples of nodes in the internal representation
that match the query. In the example given above, these would be tuples of
($p, $s, and $w) elements. The output of Q4M is stored as a new structure
within the internal representation where it can be accessed for display to the
user or be used for subsequent manipulation within the workbench. Within the
MATE workbench, there is an interactive query formulation tool that assists
the user when producing queries, as described in section 6. Further information
about the MATE query language including a grammar and implementation
details can be found in [Mengel 99].

5 MATE stylesheets and display

In order to support flexible display and editing of corpus files, we require a flex-
ible mapping between the logical structure of the data and the display struc-
ture. For example, we might want to highlight certain elements which satisfy

1 If times are coded as floating point numbers, a user defined tolerance would be a
useful addition here.

12

some query or only display a summary of the document, or omit certain parts
of the structure. This flexibility helps in the exploration of the corpus and en-
ables users to write specific editors for particular annotation tasks. To provide
this flexibility, firstly we assume (as is fairly standard in user interface design)
that the visual appearance of a displayed document can be decomposed into
display objects (section 5.6) which form a hierarchical structure, for example
XHTML[Pemberton 00] or Java display objects [Eckstein et al.98]. This dis-
play structure can then be described as an XML document. Formulated this
way, the transformation between logical and display structures is a mapping
from a directed graph to a tree. A suitable method of describing such map-
pings is to use a programming language based on ‘structural recursion’ (see
for example [Abiteboul et al.00, pp 101ff]).

5.1 Stylesheet Language

We have defined a declarative, functional, tree-transformation language for
mapping a logical document structure into a different document structure.
The emerging standard in this area is XSLT, but since it was not fully defined
when the workbench was designed, and lacks some functionalities necessary
to us, we decided to implement a slightly different and simpler transforma-
tion language, Mate Stylesheet Language (MSL), for our needs. MSL uses the
MATE query language defined above (section 4), but is otherwise similar to
XSLT. Transformation specifications written in XSLT or MSL are often called
stylesheets. Each stylesheet consists of one or more templates; each template
contains a query against which elements in the input document(s) are matched
and a set of instructions to follow if a match is found. These instructions will
often include one to recursively process the children of the matching node,
hence ‘structural’ recursion.

Figure 5 shows an example XML file, and an example stylesheet which pro-
duces MATE display objects. It uses three templates to create display objects
which will cause nouns to be displayed in red, while other words will be dis-
played in black. Each element in the XML file will be compared in turn against
the queries in the templates until a match is found, and then the body of the
template will be processed. The instruction <msl:apply-templates/> will
cause the children of the element to be processed in their turn, and when the
text children of an element are processed, a default rule adds their text to the
display structure.

13

<sentence> <msl:stylesheet>

<det>The</det> <msl:template match="($a sentence)">
<noun>cat</noun> <VerticalList>
<verb>sat</verb> <msl:apply-templates/>
<pos>on</pos> </VerticalList>
<det>the</det> </msl:template>
<noun>mat</noun>

</sentence> <msl:template match="($a noun)">

<TextBox colour="Red">
<msl:apply-templates/>
</TextBox>
</msl:template>

<msl:template match="($a *)">
<TextBox colour="Black">
<msl:apply-templates/>
</TextBox>
</msl:template>
</msl:stylesheet>

Fig. 5. An example XML file and associated stylesheet
5.2 Stylesheet Processor

When the stylesheet processor is run, one must specify a stylesheet written in
MSL as described above, and a document or set of linked documents to trans-
form. Normally, the Stylesheet Processor creates a display structure which is
then processed by the Display Processor (section 5.6) to show something to
the user. It can also be run in an alternative mode, in which case the input
document can be transformed into an arbitrary output document structure in
the internal representation, thus providing for transformations of the corpus
annotations.

5.3 Actions

In order to allow the user to interact with displays created with MATE display
objects, we have added certain action properties to each object. These define,
for example, what will happen if a user clicks on an object in the display.
When one of these display actions occurs, code in one of the attributes of
the display object defines what is to happen. The code is written in a Lisp-
like syntax which allows any Java method to be called. The basic idea is
that the code can manipulate the internal representation and/or the display
objects. In this way, user actions on the display structure can modify the
internal representation. We provide a ‘redisplay’ method, which reruns the
stylesheet on the modified part of the database and redisplays the output. A
method is provided for speech playback (given a speech file, start and end
times - probably obtained from attributes of an element). Finally, methods
are provided for invoking other programs or user interface components such

14

as the query formulation window or the waveform display window. We are
not entirely satisfied with the action syntax, since it is probably too complex
for the average stylesheet designer. However it has enabled us to experiment
with editing actions. In future work we will look at defining a set of common
editing paradigms, so that stylesheet writers will be able to use these without
having to know about the code that does the modifications of the database.

5.4 Accessing the DTD

In order to define editing interfaces we need the ability to give the user lists of
allowed element names, attribute names and allowed attribute values. This in-
formation is defined in the DTD of the annotation schema. It is thus necessary
to be able to refer to this information in stylesheets, for example to create a
menu of allowable attributes. We have done this by adding new commands to
the stylesheet language which provide iterators over element and attribute def-
initions in the DTD. An alternative approach, taken by the XMLSCHEMA
working group of the W3C [Thompson et al.00] and others, is to say that
DTDs are not a sufficiently expressive data modelling language, and to seek
to define an extended schema language for XML. Such a schema language can
be coded in XML itself and hence the standard XSLT queries and operations
can be used to access schema information.

5.5 Linking Internal Representation elements to display objects

Because we want actions on the user display to have effects on the underly-
ing corpus (i.e. we want to support editing), we need to keep back-pointers
from the display objects to the parts of the corpus which they refer to. Since
each display object was created by the instantiation of some template in the
stylesheet, which matched against an element in the input document, this con-
cept of back-pointer can be defined in a consistent way (as shown in figure
6).

5.6 Display objects

We have defined a set of Java classes for different types of MATE display
objects which are based on the Java Swing user interface classes. At present,
only a limited number of display object types have been implemented in the

15

<template>

in stylesheet
matches ¥
in

Corpus “—. _ _ _ _ _ _ |l ____________ Display
Element / Object
XML element created from
in template

Fig. 6. Linking display objects and corpus elements

workbench, basically lists, tables, menus, sound playing, waveform display,
and text. So, for example, it is not currently possible to display structure as
a parse tree. However, the workbench is set up so that it is possible to write
new Java classes of display objects to provide the desired functionality. A
new class must support a defined interface, which is similar to the interface
required for Java user interface objects. At the time of writing, we currently
in discussion with other groups to extend the range of display object types
that we support. In addition, we have defined an XML DTD which describes
the format of allowed display object structures to provide documentation and
to allow validation of stylesheets.

6 Using the MATE Workbench

In this section, we provide a brief description of the MATE workbench from
a user perspective. In order to use the workbench on a corpus, one needs a
project directory which contains the files relating to this corpus. The work-
bench comes with several demonstration directories, which each contain some
XML files and DTDs, stylesheets, a MATE project file which contains a list
of all the files which belong to this project, and some run files which specify
a stylesheet to be applied to some XML files to create a particular display.

6.1 Starting up the Workbench

When the workbench is started, a File chooser menu appears, and the user
can select a project which can then be run to display a particular interface,
causing a list of the files referenced by the project file to appear in the right-
hand window. An interface consists of one or more windows, which can each
contain a speech player, or a number of panes of text. Some example interfaces
are described in the next section.

16

Querying functions can be called in two ways: 1) The project on which the
query is to be performed can be chosen from a menu in the startup window,
without creating a display; 2) If a display has already been created, the project
queried will be the one used in creating the display. Both of these methods
bring up a query window which interactively guides the user through the
process of composing a query. The results of the query are displayed in a list,
and if a display is already present, clicking on an element in the list repositions
the main display on that element.

Conversion tools can be called from the startup window; we currently have
two available. One converts from Entropics Xlabel format to a simple XML
format, creating an element for each label (by default called “word”) with
start and end time attributes and content from the label. For example the
fragment

0.3654 26 the

0.8234 26 cat
becomes

<word start="0.0000" end="0.3654">the</word>

<word start="0.3654" end="0.8234">cat</word>

The other tool performs a conversion from the BAS Partitur format into an
XML format — this particular format is one of many possible XML represen-
tations.

6.2 FEzxample Interfaces

In this section we present some examples of the MATE workbench in action.
The display in figure 7 shows a human-machine dialogue annotated using the
MATE Communication Problems annotation scheme [Mengel et al.99]. In the
top left pane, the first two columns contain a transcription of the dialogue,
segmented into user (U) and system (S) utterances. The third column contains
a list of the communication problems which occurred during each utterance,
and the fourth a list of notes associated with each utterance. The bottom left
pane contains the full text of the all the notes pertaining to the dialogue, and
the bottom right pane a full description of each communication problem. The
top right pane shows a list of all the possible types of communication problem
according to this annotation scheme.

17

File Edit Tools Help

GG10/Highlight asymmetrigs,

EEState your capahilities. |
E;State hiowe to interact, |

: G11[Be aware of user

i background knowledge. ||55
Ill_show me a map of pacifica --| —

s ok [scznz H‘

welcome to trips 97 version 3 point 2
i'm ready to start

There is apparently no
communication of what the system
can and cannot do.

we do not have the graphics part of the
dialogue, Thus there may be instructions
and feedback on the screen which we do
not know about, Maoreover, we don’t
know for sure who the intended user
group is and which additional
infermation material users have access
to, The markup of communication
problems is made exclusively on the

SG5-1 [Noinstructions are provided to the
B user on how to interact with the
systemn.

5G7-1 |The user is assumed to know how to
B use the system — there is no offer of

Aetoiled tof 4l o tl,

Fig. 7. A MATE interface for displaying communication problems markup

File Edit Tools Help
APLAY giver instruct %
instruct starting off we are above a caravan park
exélain :
check 5
:l APLAY follower acknewledge
éuerg—gn E
Ammhmm
éuerg—w 2
align :
reply—y ArLav giver
reélg—n wie are going to 9o due south straight seuth and then we're going
Ml iJto 9—— turn straight back round and head north pastan ofd mill

“Jon the right hand side
acknow ledge :

PLAY follower
readi :
clarifi
uncodahle

due south and then hack up again

PLAY giver E

Fig. 8. A MATE interface for annotating and playing Map Task dialogue moves

Figure 8 shows the display created by running a stylesheet on a set of HCRC
Map Task files. The left pane consists of a list of possible dialogue move
types from the Map Task annotation scheme [Carletta et al.96]. The right
pane shows the transcript of the dialogue, already divided into moves. The
PLAY button above each section of text allows the user to hear the recording
of the following dialogue move. This example interface allows the user to label
each dialogue move with the appropriate move type from the list in the left-

18

hand pane, by clicking on the move to be annotated, and then on the move
type. This causes the chosen label to appear after the speaker name (giver or
follower) in the right-hand pane. In this example, the first two moves on the
screen have already been annotated, but the remainder have not. Both the
examples described above use colours in order to make the interface clearer
for the user.

Each of these interfaces is just one example of how one might choose to display
the data. By writing another stylesheet, it is possible to create a different
display which suits the needs of a different user.

7 Evaluation and Discussion

7.1 Evaluation

At the time of writing, the MATE workbench is undergoing evaluation by
members of the MATE project and its panel of advisors. There is not yet
a full-scale evaluation of how well the software works on a large annotation
project, which is essential to fully demonstrate the validity of our approach.
However, we have developed a number of different annotation schemes and
stylesheets for these schemes and these are available with the workbench.

From our evaluation of these schemes and the HCRC Map Task corpus we
can say that the workbench provides a flexible and powerful way of displaying
complex annotations. We have found that writing stylesheets was an easy way
to tailor displays to focus attention on particular aspects of the data. The
query language allows one to extract parts of the corpus based on complex
criteria, and is also central to the power of the stylesheet transformations. The
action language provides us with the ability to create and modify annotations,
although further work is needed to make writing stylesheets that contain ac-
tions easier. More work is needed to document the interface to the database
to allow other code to access it. It would be useful to modify the interfaces
between the stylesheet processor and the display manager to allow any Java
user interface object (Swing class) to be included in workbench displays.

19

7.2

Discussion

There are a number of ideas underlying the structure of the MATE workbench,
which we believe are important qualities for any speech annotation system to
have.

(1)

Because of the similarities between speech annotations and other kinds
of annotation, one should situate the development of speech annotation
tools into the broader context of XML editors and browsers. The same
is true for query languages. This is not to deny that handling speech
requires specialised software, as does the annotation of video data.

As linguistic annotations of a corpus become more complex, for example
by including many different types or versions of annotation, it becomes
very useful to have flexible options for displaying the data. The ability
to select and highlight particular aspects of the data makes it possible
to use browsing as a way of building intuition about the structures in
the data and as an aide to the formulation of hypotheses which can later
be confirmed using the query language. Similarly, the ability to define
editors tailored to particular annotation tasks, can speed up annotation
creation or checking. We suggest that the use of a high level transfor-
mation language to provide a flexible link between logical structures and
display structures is the correct way to provide such facilities.

The system design should be reflexive — definitions of user interfaces,
query results, and corpus descriptions should all be in the same format
and expressible in the same data model. If query results are represented as
documents, they can be saved as files (becoming part of the corpus) and
we can use the stylesheet language to define how they will be displayed. If
stylesheets or corpus descriptions (whether DTDs, XMLSchemas or tex-
tual comments) are represented as documents, we can use the workbench
to write specialised editors to create them, as well as use the information
(such as default and allowed values) they contain to write stylesheets to
display the annotated corpus.

In order to handle the complexity of linguistic annotations the data model
needs to extended from trees to general graphs. The query and transfor-
mation languages used should reflect this data model. This point is gen-
erally accepted, for example see the other papers in this issue, although
there are differences between the proposed models. By carefully distin-
guishing between abstract data model, implementation and interchange
formats, it should be possible to achieve convergence between these dif-
ferent proposals.

The display processor should be extensible, so that it is easy to add new
display options, for example to add tree/graph displaying capabilities.

20

7.8 Future directions

The transformation language and the data model need to be extended to
encompass dynamic interfaces and the updating of the document structure.
These are necessary to support the editing of corpus annotations. At the time
of writing, the AudioTool supports SUN u-law encoded 8000 bit per sample
audio files only. Although this does not restrict the generality of the tool as
there are publicly available speech file conversion tools like SoX [Norskog 95|,
an in-built conversion program would be desirable. We consider more com-
plex signal processing is best done by dedicated programs and not as part
of the MATE workbench. We have chosen an architecture where entire files
are loaded into memory and processed as a group. The alternative would be
to provide a streaming interface where larger files were read and processed
a section at a time (where the definition of a section would be defined by a
query on the XML structure of the file). If we were to re-implement the work-
bench, we would reconsider using the standard XSLT query/transformation
languages (once they become defined as standards). However, they would need
to be extended to support DTD access, hyperlinked documents, and the more
extensive capabilities of the MATE query language before we could do this.

7.4 Availability

At the time of writing, the MATE workbench is undergoing evaluation by
members of the MATE advisory panel. To get further documentation on the
workbench and to obtain a copy of the software, please consult the web site
http://www.ltg.ed.ac.uk/software/mate. Details about the other aspects
of the MATE project can be found at its home page http://mate.nis.sdu.dk.

8 Acknowledgements

The work described here was funded by the European Union (MATE project:
Telematics LE4-8370). We wish to thank our respective institutes for their
support. We would also like to thank Steven Bird and the anonymous reviewers
for helpful comments on the content and style of this paper.

21

References

[Abiteboul et al.00] Abiteboul S., Buneman P., and Suciu D., Data on the Web:
From Relations to Semistructured Data and XML. Morgan Kaufman, San

Francisco, 1999.

[Barras et al.00] Barras C., Geoffrois E., Wu Z., Liberman M., Transcriber:
development and use of a tool for assisting speech corpora production, this

volume, 2000, See also http://www.etca.fr/CTA/gip/Projets/Transcriber.

[Bird & Liberman 99] Bird ~ S., Liberman M., Linguistic = Annotation
Resources, Linguistic Data Consortium, University of Pennsylvania, 1999, See

http://www.ldc.upenn.edu/annotation

[Boersma & Weenik 99] Boersma P., Weenink D., Praat: doing phonetics by
computer, Institute of Phonetic Sciences, University of Amsterdam, 1999, See

http://www.fon.hum.uva.nl/praat

[Bray et al.98] Bray T., Paoli J., Sperberg-McQueen C.M. (Eds.), 1998. Extensible
Markup Language (XML) 1.0, World Wide Web Consortium, 1998, See

http://www.w3.org/TR/REC-xml.

[Brugman & Russel 99] Brugman H., Russel A., EUDICO: European Distributed

Corpora Project, Max Planck Institute for Psycholinguistics, Nijmegen, 1999,

See http://www.mpi.nl/world/tg/lapp/eudico/eudico.html

[Carletta et al.96] Carletta J., Isard A., Isard S., Kowtko J., Doherty-Sneddon G., &
Anderson A., HCRC dialogue structure coding manual. HCRC Technical Report

HCRC/TR-82, 1996.

22

[Cassidy & Harrington 00] Cassidy S., Harrington J., Multi-level annotation of
speech: An overview of the Emu Speech Database Management System, this

volume, 2000. See also http://www.shlrc.mq.edu.au/emu.

[Clark 99] Clark J. (editor), XSL Transformations (XSLT), Version 1.0, World Wide

Web Consortium, 1999, See http://www.w3.org/TR/xslt.

[Cunningham & Humphreys 99] Cunningham H., Humphreys K., GATE: General
Architecture for Text Engineering, Department of Computer Science,
University of Sheffield, 1999,

See http://www.dcs.shef.ac.uk/research/groups/nlp/gate

[Day 99] Day D., Alembic Workbench Project, The Mitre Corporation, 1999, See

http://www.mitre.org/technology/alembic-workbench

[DeRose et al.99] DeRose S., Daniel R., Maler E. (eds),
XML Pointer Language (XPointer), World Wide Web Consortium, 1999, See

http://www.w3.org/TR/WD-xptr.

[Deutsch et al.98] Deutsch A., Fernandez M., Florescu D., Levy A., Suciu D., XML-
QL: A Query Language for XML, World Wide Web Consortium August 1998,

See http://www.w3.org/TR/NOTE-xml-ql .

[Eckstein et al.98] Eckstein R., Loy M., Wood D., Java Swing, O’Reilly &

Associates, Sebastopol, CA, 1998.

[Entropic 96] Waves+ Manual, Entropic Research Laboratory Inc, 1996, See also

http://www.entropic.com.

[Goldman et al.99] Goldman R., McHugh J. & Widom J., From Semistructured

23

Data to XML: Migrating the Lore Data Model and Query Language, in
Proceedings of the 2nd International Workshop on the Web and Databases

(WebDB ’99), Philadelphia, Pennsylvania, June 1999.

[Grisham et al.96] Grisham R., Gaizauskas R., Cunningham H., & Zajac R.,
TIPSTER Text Program, Defense Advanced Research Projects Agency, 1996,

See http://wuw.itl.nist.gov/iaui/894.02/related projects/tipster

[Heid & Mengel 99] Heid U. and Mengel A.; A Query Language for Research in
Phonetics, Proceedings of the International Congress of Phonetic Sciences 1999,

San Francisco, August 1999.

[Ide 99] Ide N. (co-ordinator), Corpus Encoding Standard, Expert Advisory Group
on Language Engineering Standards (EAGLES), 1999, See

http://www.cs.vassar.edu/CES/CES1.html

[Isard et al.98] Isard A., McKelvie D. & Thompson H.S., Towards a Minimal
Standard for Dialogue Transcripts: A New Sgml Architecture for the
HCRC Map Task Corpus. Proceedings of the 5th International Conference
on Spoken Language Processing, ICSLP98, Sydney, December 1998. See

http://www.cogsci.ed.ac.uk/~dmck/ics1lp98.ps

[Le Maitre et al.96] Le Maitre J., Murisasco E., and Rolbert M., “SgmlQL, a
language for querying SGML documents”. Proceedings of the 4th European
Conference on Information Systems (ECIS’96). Lisbon, 1996, pp. 75-89. See

http://www.lpl.univ-aix.fr/projects/multext/MtSgmlQL/

[Marchiori 98] Marchiori M. (ed), QL’98 - The Query Languages Workshop, World

Wide Web Consortium, 1998, See http://wuw.w3.org/TandS/QL/QLI8

24

[Mengel 99] Mengel A., Manual for Q4M, Institut fiir Maschinelle
Sprachverarbeitung, Universitat Stuttgart, 1999,

See http://www.ims.uni-stuttgart.de/projekte/mate/q4m

[Mengel et al.99]
Mengel A., Dybkjaer L., Garrido J.M., Heid U., Klein M., Pirrelli V., Poesio M.,
Quazza S., Schiffrin A., and Soria C., MATE Dialogue Annotation Guidelines,
Institut fiir Maschinelle Sprachverarbeitung, Universitit Stuttgart, 1999. See

http://www.ims.uni-stuttgart.de/projekte/mate/mdag

[Michailovsky et al.99] Michailovsky B., Lowe J.B. & Jacobson M.,
Lacito Archivage Tool, Linguistic Data Archiving Project, 1999, See

http://lacito.vjf.cnrs.fr/ARCHIVAG/ENGLISH.htm

[Murata & Robie 98] Murata M., Robie J.,
Observations on Structured Query Languages., World Wide Web Consortium,

1998, See http://www.w3.org/TandS/QL/QL98/pp/murata-san.html.

[Norskog 95] Norskog L., SoX sound file format converter, 1995, See

http://www.spies.com/Sox

[Pemberton 00] Pemberton S. (ed.), XHTML 1.0: The Extensible HyperText
Markup Language, World Wide Web Consortium, January 2000, See

http://www.w3.org/TR/xhtml1.

[Schiel 99] Schiel F., BAS File Formats, Bavarian Archive for Speech Signals, 1999,

See http://www.phonetik.uni-muenchen.de/Bas/BasFormatseng.html.

[Sjolander 97] Sjolander K., The Snack Sound Extension for Tcl, Department of

25

Speech Music and Hearing, Royal Institute of Technology, Stockholm, 1997, See

http://www.speech.kth.se/snack

[Taylor et al.99] Taylor P., Caley R., Black A. W., & King S., Edinburgh Speech
Tools Library, Centre for Speech Technology Research, Edinburgh, 1999.

http://www.cstr.ed.ac.uk/projects/speech tools

[Thompson et al.00] Thompson H.S., Beech D., Maloney M. & Mendelsohn N., XML
Schema Part 1: Structures, World Wide Web Consortium, February 2000, See

http://www.w3.org/TR/xmlschema-1.

[Sperberg-McQueen & Burnard 94] Sperberg-McQueen C.M., Burnard L.(eds).
Guidelines for Electronic Text Encoding and Interchange, Text Encoding

Consortium, Oxford, 1994. See also http://www.tei-c.org.

[Vatton et al.99] Vatton I., Guétari R., Kahan J., Quint V.,
Amaya — W3C’s Editor/Browser, World Wide Web Consortium, 1999. See

http://www.w3.org/Amaya

[Wood 98] Wood L. (ed), Document Object Model (DOM) Level 1
Specification Version 1.0, World Wide Web Consortium, December 1998. See

http://www.w3.org/TR/1998/REC-DOM-Level-1.

26

